Friday, April 29, 2011

Longest Bond Length

II










Among I, II, III which has the longest bond length? 


In [I] the number of hyperconjugable H atom is 10.
In [II] the number of hyperconjugable H atom is 6.
In [III] the number of hyperconjugable H atom is 4.


Since, Bond Length is directly proportional to hyperconjugable H atoms.
The bond length order follows as I>II>III.

Sunday, April 17, 2011

Alkyl Halide

 Preparation of Alkyl halide : -

  • From Alcohols : Reagents

    • Haloacids    (HX) [where X=Halogens]
    • Thionyl Chloride (SOCl2)
    • Phosphorus Chloride (PCl3 or PCl5)
Reactivity of Alcohol with Haloacids : 3o > 2o > 1o

The reaction of  1and 2o alcohols requires a catalyst ZnCl2 to react with HX.

  • Hydrohalogenation
  • Halogenation
  • By Free Radical Halogenation
  • SANDMEYER's Reaction

Wednesday, April 13, 2011

Stereomerism


Asymmetric carbon atom: Carbon atom bonded with four different atoms or groups is called asymmetric carbon atom. Only sp3 can have asymmetric, neither sp2 nor sp.     

      They can be of two types:-
·         Similar
·         Disimilar

If a Molecule has dissymmetry then its mirror image will be always non-superimposable and this non-superimposable mirror image will be an optical isomer.

In case of a symmetric molecule,it wil always have a superimposable mirror image.
Disymmteric

Plane polarized light vibrates in all directions but if it is passed through nicol prism(made of CaCO3) then it vibrates only in direction. This is called plane polarized light.
Dextro Rotatory (d)(+)
Levo Rotatory (l)(-)

In every Fischer projection the two horizontal bonds are understood to be projecting out of the plane toward you and the two vertical bonds are projecting into the plane away from you.

The enantiomer of a compound can be drawn by simply drawing the mirror image of the Fischer projection
Molecules without any asymmetric center are also found to be disymmteric in some cases.

Monday, April 11, 2011

Geometrical Isomerism

Number of geometrical isomerism = 2n, where n is the number of double bonds.

·         If n=1, then number of geometrical isomers is equal to 2(always).
·         If n>1, then number of geometrical isomers is less than or equal to 2n.

If numbering can be started from either of the two sides then number of geometrical isomers is less than 4.

If numbering can be started from only one side then number of geometrical isomers is equal to four.

Properties : -

1. Stability of Goemetrical Isomers :- Generally, trans is more stable than cis because cis isomer is more sterically crowded than trans. 
                      trans > cis          (Stability)

2. Melting Point :- It is directly proportional to van der Wall's intermolecular forces and this force is directly   proportional  to polarisibility and surface area.
Since trans has more surface area than cis trans will have higher melting point than cis.  
                       trans > cis           (m.p)
                                         
3. Solubility :- It is inversely proportional to van der Walls intermolecular force.So, cis will have more         solubility than trans.
                        cis > trans            (Solubility) 
                                  


               

Wednesday, April 6, 2011

Hydrocarbons

Catalyst Used
Reaction Mechanism
H2/Catalyst
Free Radical Addition
R-MgX/Ar-MgX (Heat)
Free Radical Pathway
Electrolysis
Electrolysis
Na/Dry Ether/Heat

Zn/Ether/Heat (Same as Wurtz)

R2CuLi

Clemennsen/Wolf-Kishner

Soda Lime/Heat

Preparation of Alkanes                                 
1.       Hydrogenation                      
2.       Grignard Reagent
3.       Kolbe’s Electrolysis
4.       Wurtz Reaction
5.       Frankland Reaction
6.       Corey House Alkane Synthesis
7.       Reduction of Aldehyde and Ketone
8.       Decarboxylation
Catalyst Used
Reaction Mechanism
X2/Heat
Free Radical Pathway
O2/Heat
Free Radical Pathway
Heat , SiO2/Al2O3

Ni/Heat ,Silica Alumina

HCl/AlCl3 Alkene or Alkyl Halide

HNO3/Heat NaNO2
Free Radical (Direct Nitration)
Conc. H2SO4
Carbocation
KMnO4
Radical Pathway

Properties Of Alkanes
1.       Halogenation
2.       Combustion of Alkanes                
3.       Pyrolysis or Cracking
4.       Aromatization
5.       Isomerisation
6.       Nitration of Alkanes
7.       Sulphonation of Alkanes
8.       Hydroxylation


Preparation Of Alkenes
1.       Dehalogenation
2.       Reduction From Alcohols
3.       From Alkyl halides

Properties Of Alkenes
1.       Halogenation
2.       Hydrohalogenation
3.       Hydration
4.       Hydroxylation
5.       Case of Peracid
6.       Case of KMno4
7.       Case of Ozonolysis
8.       Allylic Halogenation
9.       Polymerisation Of Alkenes


 Preparation of Alkynes
1.       Dehydrohalogenation
2.       Dehalogenation
3.       Alkynides
4.       Isomerisation
 Properties of Alkynes                                           
1.       Halogenation
2.       Hydrohalogenation
3.       Addition of HOX
4.       Hydration(Addition Of water
            Hydroboration
           KMnO4  Oxidation'
            Ozonolysis
8.       Propargylic Halogenation